ЛЕКЦИЯ 7: ГЕОМЕТРИЧЕСКАЯ ЗАДАЧА ЧПУ

Учебник / Учебное пособие	Раздел	Страницы
Сосонкин В.Л., Мартинов Г.М. Системы числового программного управления: Учеб. пособие. – М. Логос, 2005. – 296 с. ISBN 5-98704-012-4.	3.1. Реализация геометриче- ской задачи	121-134

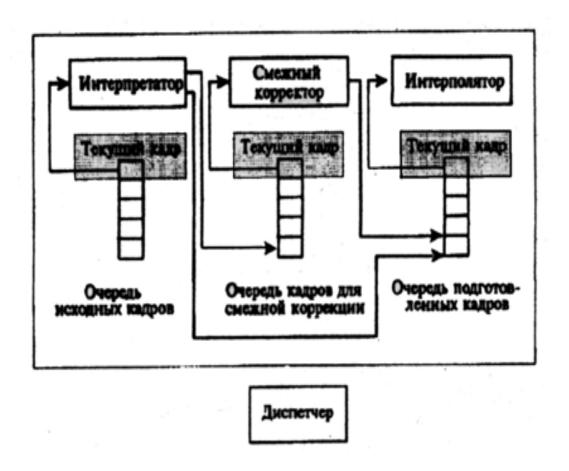


Рис. 1. Структурная схема геометрического ISO-процессора

Рис.2. Полная объектная архитектура ISO-процессора

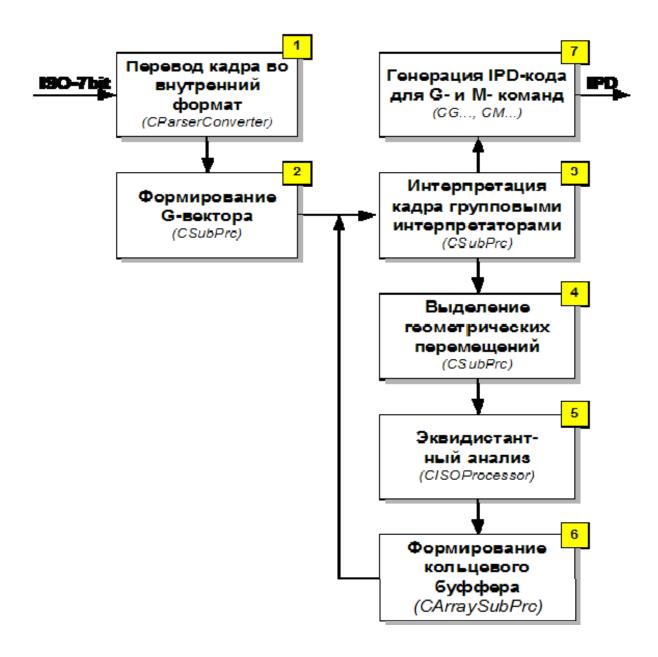


Рис. 3. Конвейер ISO-процессора

CISOProcessor::ExecuteBlock()

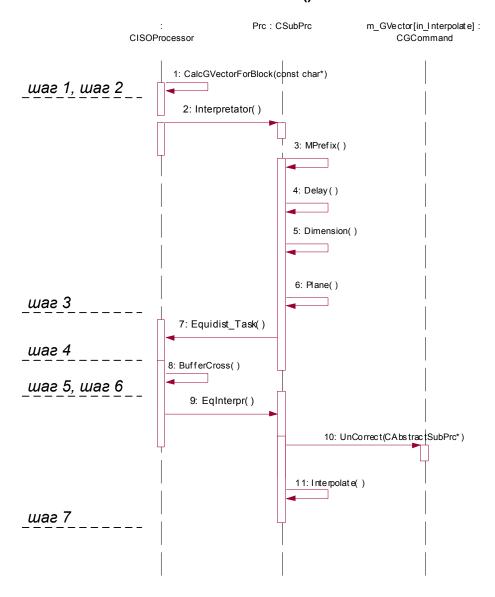


Рис. 4. Конвейер ISO-процессора

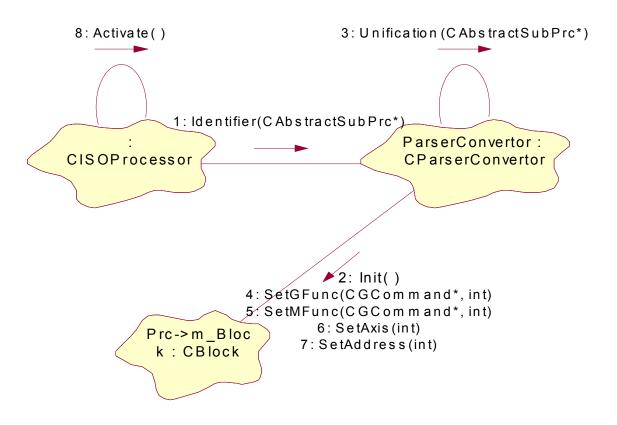


Рис. 5. Фрагмент диаграммы объектов конвейера

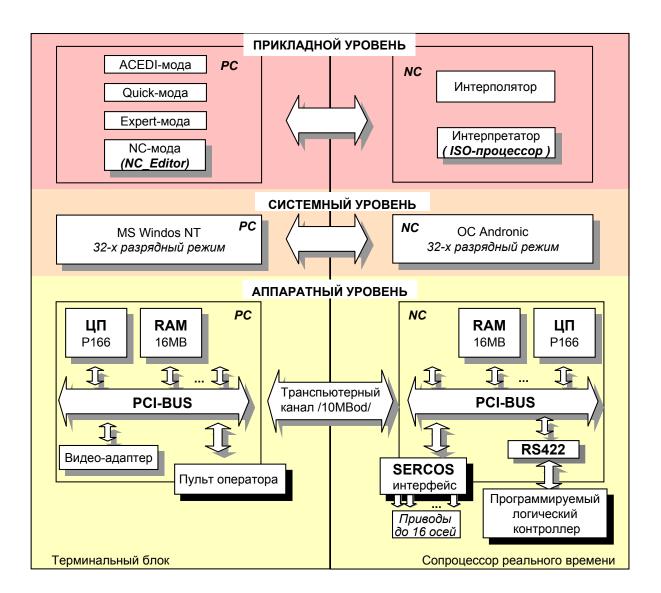


Рис. 6. Интеграция ISO-процессора в двух-компьютерную систему ЧПУ типа PCNC

```
<ваголовок> -
                   <старт интерполяции, подача задана яв-но> | <старт
интерполяции, подача задана неявно>|<вызов подпрограммы>|<конец про-
граммы>|<комбинация алгоритмов>|<переоп-ределение скорости пода-
чи> | <относительный номер кадра>;
<старт интерполяции, подача задана явно> - HL i01 (<идентификатор</p>
осей>, <подача в мм/мин>);
<старт интерполяции, подача задана неявно> - HL i02 (<идентификаторы</p>
осей>, <индекс подачи>);
<вызов подпрограммы> - HL i04(<pasмep подпрограммы в байтах>);
<конец программы> - HL End;
<комбинация алгоритмов> - HL n00 (<маска интерполяции>);
<macka интерполяции, 16-разрядное слово> - <признак линейной><признак
круговой><признак сплайновой><признак полино-миальной><признак алго-
ритма Безье><признак алгоритма Рябенко-ва><резервные биты>;
<переопределение скорости подачи> - HL n01(<H0B3Я ПОДЗ-ЧЗ>);
<данные> - <линейная интерполяция> | <сплайновая интерпо-ляция, заданы</p>
углы входа и выхода> | < сплайновая интерполяция, задан угол выхо-
да>|<круговая интерполяция>|<переопределение плоско-
сти> | <переопределение осей>;
<линейная интерполяция> - DL 06 (<относительные координа-ты прямой>);
<сплайновая интерполяция, заданы углы входа и выхода>-DL 07
(<относительные координаты точек>,<углы входа-выхода>);
<сплайновая интерполяция, задан угол выхода> - DL 08 (<относительные</p>
координаты точек>, <угол выхода>);
<круговая интерполяция> - DL 11 (<относительные координаты для окруж-</p>
HOCTU>);
<переопределение плоскости> - DL 16(<код плоскости>);
<переопределение осей> - DL 17 (<коды осей>).
```

Рис. 7. Представление ІРД-кода на языке формальной грамматики

N	Программа	IPD-форматы
1	N10 %CNC-Test1	HL_n05(0)
	N20 *comment	
	N30 G90	
	N40 G00 X20 Y20	HL_n05(3) HL_i02(10,0) DL_06(20,20)
	N50 G01 X50 Y50	HL_n05(1) HL_i02(10,1) DL_06(30,30)
	N60 X100	HL_n05(1) DL_17(8) DL_06(50)
	N70 Y100	HL_n05(1) DL_17(2) DL_06(50)
	N80 M30	HL_n05(1) HL_End
2	N10 %CNC-Test2	HL_n05(0)
	N20 *comment	
	N30 G91 G00 X20 Y20	HL_n05(2) HL_i02(10,0) DL_06(20,20)
	N40 G01 X30 Y10 F2000	HL_n05(1) HL_i01(10,2000) DL_06(30,10)
	N50 X100	HL_n05(1) DL_17(8) DL_06(100)
	N60 Y100	HL_n05(1) DL_17(2) DL_06(100)
	N70 G02 X10 Y10 I10 J0 F2500	HL_n05(1) HL_n01(2500) DL_17(10)
		DL_11()
	N80 M30	HL_n05(1) HL_End
3	N10 %CNC-Test3	HL_n05(0)
	N20 *comment	
	N30 G91	
	N40 G00 X30 Y30	HL_n05(3) HL_i02(10,0) DL_06(30,30)
	N50 G300 G01 Z50	HL_n05(1) HL_i01(12,2500) HL_n00(3)
		DL_17(4) DL_06(50)
	G02 X20 Y20 I0 J20 F2500	DL_17(10) DL_11()
	N60 G01 X100	HL_n05(1) DL_17(8) DL_06(100)
	N70 Y100	HL_n05(1) DL_17(2) DL_06(100)
	N80 M30	HL_n05(1) HL_End

Рис. 8. Результаты работы ISO-процессора по формированию IPD-форматов

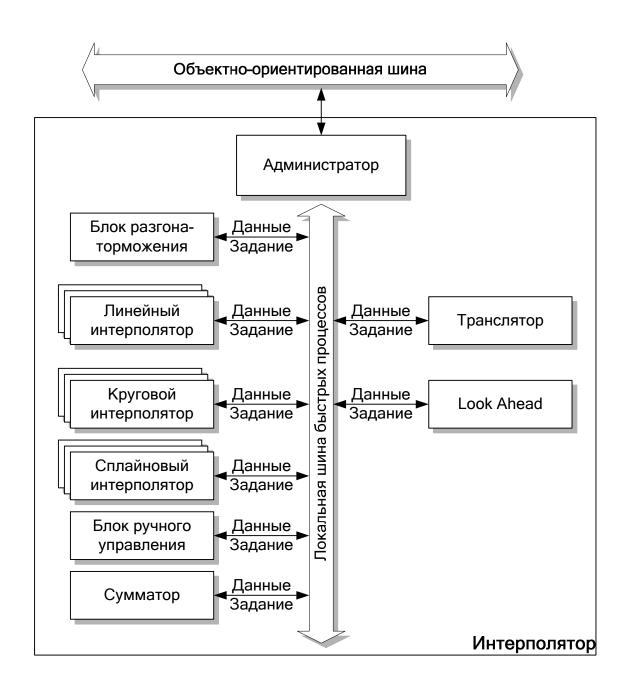


Рис. 9. Структурная схема интерполятора

Группа	Mode	Назначение группы	
0		Резервная группа	
	0.0	Признак конца кадра	
1		Блок управления скоростями и ускорениями	
	1.0	Блок разгона-торможения	
2		Резервная группа	
3		Контурные интерполяторы	
	3.0	Линейный интерполятор	
	3.1	Круговой интерполятор	
	3.2	Сплайновый интерполятор	
4		Резервная группа	
5		Резервная группа	
6		Резервная группа	
7		Блоки управления приводами подачи	
	7.0	Сумматор	

www.ncsystems.ru

Рис. 7. Кодирование блоков интерполятора

Код	Режим интерполяции			
Блок разгона-торможения (Mode = 1.0)				
0	линейный закон разгона и торможения			
1	линейно-параболический закон разгона и торможения			
2	линейно-экспоненциальный закон разгона и торможения			
Блок линейной интерполяции (Mode = 3.0)				
0	быстрое позиционирование			
1	линейная интерполяция			
Блок круговой интерполяции (Mode = 3.1)				
2	круговая интерполяция по часовой стрелке			
3	круговая интерполяция против часовой стрелки			

Рис. 8. Кодирование режимов интерполятора